Cómo desarrollar nuevos dispositivos magnéticos gracias a unas nanopartículas de óxido de hierro muy especiales.

Investigadores españoles han caracterizado el comportamiento estructural, electrónico y magnético de nanopartículas de óxido de hierro en fase épsilon bajo condiciones extremas de presión.

La dificultad para acceder a las partes más interiores de la Tierra implica una ausencia de estudios experimentales directos sobre los minerales y compuestos que controlan la geodinámica y el geomagnetismo. La Tierra está principalmente formada por seis elementos: magnesio, aluminio, silicio y hierro, en combinación con hidrógeno y oxígeno. Así pues, todos los estudios sobre materiales que contengan estos elementos en las condiciones apropiadas pueden abrir nuevas vías de investigación que buceen en los misterios del interior del planeta.

Ahora, un equipo de investigadores de la Universitat Politècnica de València (UPV), el Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) y del European Synchrotron Radiation Facility (ESRF) ha llevado a cabo un estudio, publicado en Nature Communications, que revela que la fase épsilon (hasta ahora considerada rara) se puede encontrar en las capas internas de la Tierra.

En su trabajo, los investigadores han caracterizado el comportamiento estructural, electrónico y magnético de nanopartículas de óxido de hierro en fase épsilon bajo condiciones extremas de presión. Este tratamiento ha llevado al descubrimiento de la nueva fase épsilon prima, con unas propiedades magnéticas desconocidas hasta ahora.

Este material español mejorará la precisión de los satélites

“Desde el punto de vista geofísico este hallazgo es muy relevante. Abre la puerta a que esta fase épsilon se pueda encontrar en el interior de la Tierra. Por otro lado, se ha descubierto una nueva fase del óxido de hierro (bajo altas presiones) que contiene unas propiedades magnéticas distintas a las que se pueden obtener actualmente. Y tener un material con dichas propiedades haría que se tuvieran que modificar los modelos geodinámicos que conocemos”, apunta Juan Ángel Sans, investigador Ramón y Cajal del grupo EXTREMAT del Instituto de Diseño y Fabricación (IDF) de la Universitat Politècnica de València.

Nos ha sorprendido que la fase épsilon fuera estable a tan altas presiones, hasta 27 GPa, y que por encima de esta presión apareciese esta nueva fase, cuyas propiedades magnéticas aún no conocemos bien” apunta Martí Gich, investigador del ICMAB-CSIC. “Esta estabilidad a altas presiones indica que debe ser posible incorporar otros elementos en proporciones elevadas dentro de la fase épsilon, con lo que se espera poder controlar sus propiedades y prestaciones”, añade.

Fuente: ticbeat.com

 

Artículos Relacionados

DEJA UN COMENTARIO:

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.